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Abstract—Recent studies show that majority-based logic syn-
thesis is beneficial for both traditional and nanotechnology digital
designs. However, most of the existing synthesis algorithms for
majority logic generate majority-of-three (M3) networks. The
optimization opportunity for majority logic by using an arbitrary
number of odd inputs still requires a large research effort. In
this paper, we present an exact synthesis approach for computing
Boolean functions in majority-of-five (M5) forms with a minimum
number of operations using Boolean satisfiability. By exploiting
the symmetry properties of majority operators, we make use of
symbolic encoding method to represent the node functionality
and to reduce the number of variables. Moreover, we represent
the M5 forms by M5-inverter graphs (M5IGs) for manipulation,
which is an extension of majority-inverter graphs (MIGs). The
experimental results on EPFL benchmark suites indicate the
proposed method achieves 10.4% improvement on size and 11.4%
on depth compared to the state-of-the-art exact synthesis method.

I. INTRODUCTION

Logic synthesis plays an essential role within computer-
aided design (CAD) systems for digital circuits. New data
structures and algorithms for logic synthesis are motivated by
both the search for faster circuits in CMOS and the emergence
of nanotechnologies (e.g., Quantum-dot Cellular Automata
QCA [1]) where majority logic plays a key role. This led to
a renewed interest on majority synthesis and optimization [2],
[3], [4], [5], yielding competitive results in CMOS ASICs,
Field Programmable Gate Arrays (FPGAs) besides emerging
technologies.

Most of the existing synthesis algorithms for majority
logic exploit majority-of-three (M3) networks, that can be
generalized to the majority of an arbitrary odd number n
of inputs. Although theoretical results were presented in [6],
efficient optimization methods are still missing. Nevertheless,
QCA implementations of adders show that majority-of-five
(M5)-based designs has superior performance and area [7] as
compared to M3-based designs.

In this paper, we synthesize Boolean functions in M5 forms
using a new exact synthesis technique, i.e., with guaranteed
minimality properties. First, we exploit the identities of M5

operators and show how to map them into the commonly-used
M3, AND, and OR operations. Then, we extend the state-of-
the-art exact synthesis algorithms to support M5 operations. In
particular, the number of encoding variables (critical for effec-
tive optimization) is reduced by exploiting the symmetry prop-
erties of M5. We conduct experiments on 4-variable Boolean
functions by computing its optimal M5IG logic networks. The
results show that the upper bound on the number of M5IG
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Fig. 1. The Boolean network of Example 1, x4 = x2⊕x3 and x5 = x1∨x4.

gates for representing 4-variable functions is 5 with a depth of
5 levels. The proposed method is used to synthesize arithmetic
benchmark suites [8]. On average, our method achieves 10.4%
improvement on size and 11.4% on depth as compared to the
exact synthesis using Majority-Inverter Graphs (MIGs) [5] as
the underlying data structure. The size and depth improvement
are promising for an efficient nanotechnology circuit design
with better figures of merit of area and performance.

II. BACKGROUND

A. Boolean Functions and Networks

The functions considered in this paper are completely
specified Boolean functions f : Bn → B, and B ∈ {0, 1}.
Given a set of Boolean variables X = {x1, . . . , xn}, a function
f(X) can be represented by its truth table which is a 2n size
bitstring f = (b2n−1 . . . b0), where bi, i ∈ [0, 2n − 1] is the
bit position in the truth table.

Example 1. The truth table of the function x1 ∨ (x2 ⊕ x3)
can be represented in either f = (1011 1110)2 or 0xbe in
hexadecimal form.

A Boolean network is a directed acyclic graph (DAG) with
nodes corresponding to Boolean functions and edges corre-
sponding to wires connecting the nodes [9]. Mathematically,
given a function of n inputs x1, . . . , xn, a Boolean network is
a sequence of gates (xn+1, . . . , xn+r) with

xi = xj(i) ◦i xk(i), for n + 1 ≤ i ≤ n + r (1)

That means the two inputs of each gate i are previous gates
or inputs with j(i) < k(i) < i using ◦i, which is one
of the 16 binary operations [10]. The last gate xn+r is the
network’s output for single-output functions, while each gate
could potentially be an output for multi-output networks. The
Boolean network of Example 1 is shown in Fig. 1. A Boolean
function f is called normal if f(0, . . . , 0) = 0. A Boolean
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network represents a normal function if all of its gate functions
are normal.

B. Majority-Based Logic Synthesis

The M3 function f over three Boolean variables a, b, and
c is denoted by f = 〈abc〉, which can be expressed in both
disjunctive and conjunctive normal forms (CNFs).

f = ab ∨ ac ∨ bc = (a ∨ b)(a ∨ c)(b ∨ c) (2)

By setting any variable to constant 0 and 1, one can obtain
the conjunction and disjunction of the other two variables,
respectively. The MIGs are logic representations that use only
M3 and inverters as basic primitives. The axiomatic system for
the MIG Boolean algebra makes MIG-based representations
extremely competitive at logic rewriting.

In terms of M5 logic function over five Boolean variables
a, b, c, d, e,

〈abcde〉 =abc ∨ abd ∨ abe ∨ acd ∨ ace∨
ade ∨ bcd ∨ bce ∨ bde ∨ cde (3)

However, it can be expressed in terms of M3, which resulted
in an optimal depth expression using M3-based exact synthe-
sis [2].

〈abcde〉 = 〈a〈bcd〉〈〈abc〉de〉〉 (4)

The optimization opportunities arise by applying the identity
from right to left in a MIG, in which the depth can be reduced
by 2 and the number of nodes can be reduced by 3 in the
respective subcircuit.

III. SAT BASED EXACT SYNTHESIS

In this Section, we first demonstrate the SAT formulation
proposed by Knuth to find an area-optimal normal network.
Then we propose our encoding method for M5 operators.

A. Knuth’s Algorithm

Knuth’s algorithm aims to find a normal Boolean network,
or Boolean chains, using 2-input gates. It was inspired by the
work of Kojevnikov [11] et al. and Éen [12]. Recently, the
SAT formulation was extended for combinational delay opti-
mization [13] and logic synthesis applications with complex
constraints [14].

1) Variables: For 1 ≤ h ≤ m, n < i ≤ n+ r, and 0 < t <
2n, the variables used in the SAT formulation are defined in
the following:

xit : tth bit ofxi’s truth table
ghi : [gh = xi]

sijk : [xi = xi ◦i xk] for 1 ≤ j < k < i

fipq : ◦i(p, q) for 0 ≤ p, q ≤ 1, p + q > 0

(5)

If ghi is true, it means function gh is represented by gate
xi. The variable sijk is a selection variable, which evaluates
to true if the two inputs of gate xi are xj and xk. Finally,
the variable fipq is true, if the operation of gate xi is true for
input assignment (p, q). Note that the method works for normal
Boolean functions. If a function is not normal, we invert the

root gate to generate a inverted function for preprocessing.
Because the function is normal, which inherently makes each
gate maps (0, 0) 7→ 0, we discard xi0 and fi00 for all i.
We refer the reader to [13] for a comprehensive example to
show the variables assignment. The defined variables are then
constrained by a set of clauses to ensure the network realizes
the correct functions.

2) Clauses: Intuitively, if gate xi has two inputs xj and xk,
and the tth bit of xi, xj , and xk are a, b, and c, respectively,
then the gate xi must operate as b ◦i c = a. Thus the main
clauses to represent the operation constraints can be written
as:

((sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄)) 7→ (fibc ⊕ ā) (6)

Note that a, b, and c are constants which are used to set the
proper variable polarities. It can be rewritten as CNFs, that is

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c)) ∨ (fibc ⊕ ā)) (7)

Let (t1, . . . , tn)2 be the binary encoding of t, then the clauses

(ḡhi ∨ (x̄it ⊕ gh(t1, . . . , tn))) (8)

constrain the output values to the gates they point to. More-
over, the constraints

∨n+r
i=n+1 ghi ensure that each output is

realized by the network and the constraints
∨i−1

k=2

∨k−1
j=1 sijk

ensure that each gate has exactly two inputs.
The above-mentioned clauses are essential to make the

algorithm work. However, additional constraints can help to
reduce the search space for the SAT solver [10]. Especially, a
recent work that using DAG topologies to constraint the shape
of the network is promising in runtime [3].

B. Identities of M5 Operators
We consider using M5 as logic primitives for the synthesis

of Boolean functions. In our case, we make use of M5-Inverter
Graphs (M5IG) as the underlying data structure for exact
synthesis.

Theorem 1. The M5 operator can be reduced to M3 function
if 1) there exists two pair of duplicated inputs, or 2) the two
inputs biased to constant inputs 0 and 1.

Proof. Without loss of generality, we assume the two dupli-
cated inputs are a and b, then

〈aabbc〉 = 〈abc〉 (9)

One can obtain the right hand side expression by expanding
and simplifying of the left hand side function defined in
Equation (3). Also, we assume the five inputs of M5 contains
two constant inputs 0 and 1, while the other three inputs are
a, b, and c, then

〈01abc〉 = 〈abc〉 (10)

The expansion and simplification processes are similar with
the proof of Equation (9).

Due to symmetries, one can obtain more identities as
follows:

〈aabbc〉 = 〈aabcc〉 = 〈abbcc〉 = 〈01abc〉 (11)
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Fig. 2. A full adder logic network represented by (a) MIG and (b) M5IG,
where the dashed lines indicate the complemented edges. Note that the
constant zero input is not shown in (a) as it is not used.

Moreover, as AND and OR operators can be obtained by
setting one input of M3 to a constant, in terms of M5 operator,
they can also behave as AND and OR by

a ∧ b =

Equation (9)

〈0ab〉 = 〈00aab〉 = 〈010ab〉 (12)

a ∨ b = 〈1ab〉 = 〈11aab〉 = 〈011ab〉
Equation (10)

(13)

Theorem 2. M5IG ⊃ MIG

Proof. M5IG is an extension of MIG, which is a homogeneous
logic network with an indegree equal to 5 and each node
representing the M5 function. In both M5IGs and MIGs,
the complemented edges represent inverters. A MIG node is
always a special case of an M5IG node, as can be obtained
from Theorem 1. On the other hand, an M5IG node is never
a special case of a MIG node, because of the functionality of
the M5 cannot be uniquely realized by M3.

Corollary 1. M5IG ⊃ And-Inverter Graph (AIG) and M5IG
is an universal representation form.

Proof. M5IG ⊃ MIG ⊃ AIG, where both MIG and AIG are
universal representation forms [5], [15].

Fig. 2 depicts MIG and M5IG logic networks for a full
adder, which can be expressed by

s = a⊕ b⊕ cin and cout = 〈abcin〉 (14)

Both of the logic networks are optimal representations using
the given primitives [6].

A proper set of manipulation tools are essential to handle
M5IG to automatically reach compact representations. Al-
though an axiomatization system for majority-n logic was pre-
sented, how to obtain an effective initial M5IG representation
has not been addressed. Obviously, exact synthesis using M5IG
as the underlying data structure can reach a more compact
logic network than the method using one-to-one replacement
of MIG nodes by M5IG nodes.

C. Encoding of M5 Constraints

The variables to encode the truth table and the output gate
are the same with Knuth’s method. As we constrain the node
functionality to be M5, which has five inputs instead of two,
the selection variable has extended to be siJ which means
the node i has five inputs from the set J = 0, a, b, c, d, e.
To cover all possibilities of 5-inputs, we allow both constant
and duplicated inputs, e.g., both si00abc and siaabbc are valid
representations. Given the inputs set J , to construct input
combinations, we consider following cases of the inputs to
cover the ordinary 2-5 individual inputs:

• five inputs: 〈abcde〉 for M5 operation, there is just one
case,

(
5
5

)
= 1.

• four inputs: considering one pair of duplicated inputs of
the forms 〈aabcd〉, . . . , 〈bcdee〉, thus there is totally 4×(
5
4

)
cases; also in terms of one constant input, there are

totally
(
5
4

)
cases of the forms 〈0abcd〉, . . . , 〈0bcde〉.

• three inputs: considering two constant inputs to build M3

operation, for the forms of 〈00abc〉, . . . , 〈00cde〉, there
are totally

(
5
3

)
cases.

• two inputs: considering two-operands AND and OR op-
erations, for the forms of 〈00aab〉, . . . , 〈00dde〉, there are
totally

(
5
2

)
cases.

Therefore, assume that we are given 5 non-constant inputs and
a constant 0 input, the number of required steps to compute
the function is 1, then we need(

5

5

)
+ 5×

(
5

4

)
+

(
5

3

)
+

(
5

2

)
= 46 (15)

selection variables. Generally, suppose we are given nin non-
constant inputs and a constant 0 input, the number of required
steps to compute the function is nreq, and nt = nin+nreq−1,
then we need(

nt

5

)
+ 5×

(
nt

4

)
+

(
nt

3

)
+

(
nt

2

)
(16)

selection variables to encode SAT formulation.
Since the majority function is self-dual, which

is 〈abcde〉 = 〈āb̄c̄d̄ē〉, we only consider the
following 16 cases, while the other 16 cases can
be obtained by inverting the function outputs.
〈abcde〉 〈ābcde〉 〈ab̄cde〉 〈abc̄de〉
〈abcd̄e〉 〈abcdē〉 〈āb̄cde〉 〈ābc̄de〉
〈ābcd̄e〉 〈ābcdē〉 〈ab̄c̄de〉 〈ab̄cd̄e〉
〈ab̄cdē〉 〈abc̄d̄e〉 〈abc̄dē〉 〈abcd̄ē〉

Knuth’s method use variables fipq to indicate the operations
for gate xi under the input assignment (p, q), thus the fipq
allow for a representation of all 22

2

= 16 normal 2-input
functions. In our scenario, this number will dramatically
increase to 22

5

normal 5-input functions. Therefore, we use
symbolic encoding method to represent all 16 M5 functions.
The operation variable for step r is encoded as or1, . . . , or16,
we need add additional two clauses.

• Clause
∨16

w=1 orw ensure that each step should realize at
least one of the 16 operations.



• For each selection variable and all input combinations
from (00000) to (11111), we check the output of all the
16 operations to add consistency constraints to ensure the
operations compute the correct functions. For example,
suppose the selection variable siabcde, and the input
combination is (10000), then we can check or1 = 〈abcde〉
outputs 0, while or16 = 〈abcd̄ē〉 outputs 1. One can verify
that the output offset is {or1, . . . , or10} and the onset is
{or11, . . . , or16}. Thus the clause is added as follows.

s̄iabcde ∨ x̄it ∨ or11 ∨ . . . ∨ or16

s̄iabcde ∨ x̄it ∨ ōr1

. . .

s̄iabcde ∨ x̄it ∨ ōr10

s̄iabcde ∨ xit ∨ or1 ∨ . . . ∨ or10

s̄iabcde ∨ xit ∨ ōr11

. . .

s̄iabcde ∨ xit ∨ ōr16

(17)

Therefore, the Knuth’s method can be extended to solve exact
synthesis of Boolean functions using M5 operators.

Given a Boolean function, we start the exact synthesis
algorithm by trying to find a solution using r = 1 gate. If one
solution is found, it returns an M5IG; otherwise, the algorithm
increases the number of gates r to restart encoding and solving
until the upper bound is reached, which ensures the algorithm
find the logic network with an optimal number of gates.

IV. EXPERIMENTS

The proposed exact synthesis method is implemented in
C++ based on EPFL open source logic synthesis libraries [16].
All experiments were conducted on an Intel R© Xeon R© CPU E5-
2650 v4 @ 2.20GHz. The results are verified by simulating
the truth tables to ensure correctness.

A. Evaluations on 4-variable Boolean Functions
Two Boolean functions f and g are NPN-equivalent if f

can be obtained from g by negating inputs, permuting inputs,
or negating the output. All 4-input Boolean functions can be
classified into only 222 NPN representatives. We implemented
our exact synthesis algorithm to all 222 NPN classes. The
results show the most expensive function f = a ⊕ b ⊕ c ⊕ d
requires 5 M5IG nodes with a depth of 5 levels instead of
7 MIG nodes with a depth of 6 levels [2]. Therefore, we can
obtain advantages on both size and depth of the logic network.
The expressions of f are shown as follows.

x1 = 〈0̄0ab̄c〉 x2 = 〈ābc̄x1x1〉
x3 = 〈00d̄d̄x2〉 x4 = 〈bc̄x1x3x3〉
x5 = 〈0̄dx̄2x3x4〉 f = x5

The computation time for all these functions is around 8
hours, which indicate 2 minutes are required on average for
each function. However, the computation time can be improved
using modern SAT encoding techniques such as counterex-
ample guided abstraction refinement. The prior knowledge
about the Boolean functions structures by decomposition is
also helpful for SAT solving.

TABLE I
COMPARING MIG AND M5IG SIZE/DEPTH OPTIMIZATION

Benchmark I/O MIG [2] M5IG
Size Depth Size Depth

Adder 256/129 512 130 386 129
Barrel shifter 135/128 3238 14 2496 14
Divisor 128/128 44331 4381 47147 4231
Hypotenuse 256/128 160678 9518 141850 9334
Log2 32/32 27645 383 22314 338
Max 512/130 2535 294 2302 237
Multiplier 128/128 22720 188 19362 186
Sine 24/25 4768 169 3822 157
Square-root 128/64 19746 6043 16972 4097
Square 64/128 15670 156 13855 129

Average: 30184 2128 27051 1885
(10.4%↓ ) (11.4%↓ )

Geomean: 2201 1929 (12.4%↓ )

B. Evaluations on EPFL Combinational Benchmarks

To apply our method to large circuits, we conduct experi-
ments on 10 EPFL arithmetic combinational benchmarks. We
first apply LUT mapping on all circuits to map the network
into k-LUTs. Each LUT represents a k-variable Boolean
function, which serves as the input of our exact synthesis.
Since all 4-variable functions only have 222 NPN classes and
the optimal M5IG logic networks are precomputed, we set
k = 4 to replace each LUT with optimum networks and finally
merge them together to construct an optimized, functionally
equivalent logic network.

The results are shown in Table I, in which the information of
the benchmark name, primary inputs/outputs (I/O) are listed
in the first two columns. For comparison, we compare the
method with exact synthesis using MIG as the underlying
data structures [2]. On average, our method can achieve 10.4%
improvement on size while 11.4% on depth. After computing
the geometric mean over the sizes and depths, the proposed
method performs 12.4% better than MIG. In terms of size, 9
out of 10 benchmarks are optimized except circuit Divisor.
The main reason is our method require at least 5-variable
inputs, for these function less than 5, we first extend them
to 5-inputs. Thus, if the LUT mapping generates too many
functions with a small number of variables, it may result
in performance deterioration. In terms of depth, 9 out of
10 benchmarks achieve improvement while circuit Barrel
shifter got exactly the same depth.

V. CONCLUSION

Majority-based logic synthesis is promising for both tradi-
tional and emerging digital circuit designs. Most current syn-
thesis algorithm using M3 as logic primitive since it is simple
and comprehensively studied. In this paper, we presented an
exact synthesis method to represent Boolean functions in M5

forms. The experimental results on EPFL benchmark suites
show that we obtain 10.4% improvement on size and 11.4%
on depth compared to the method based on M3.
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